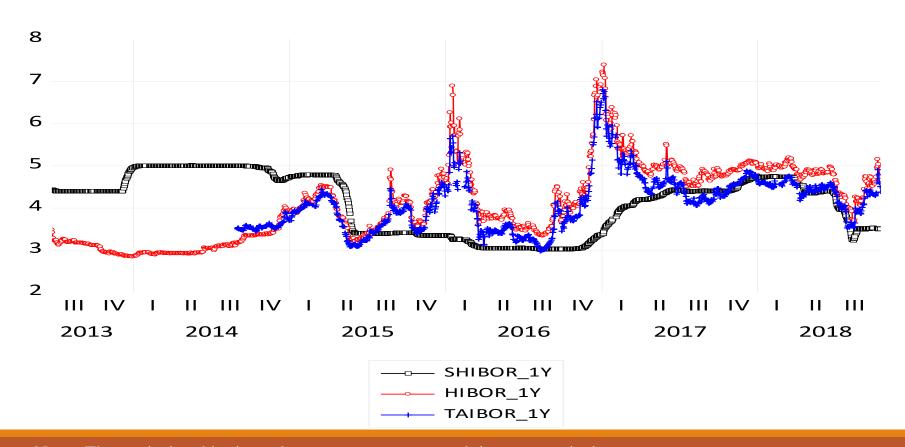
Renminbi Arbitrage among Taiwan, Hong Kong and Mainland China

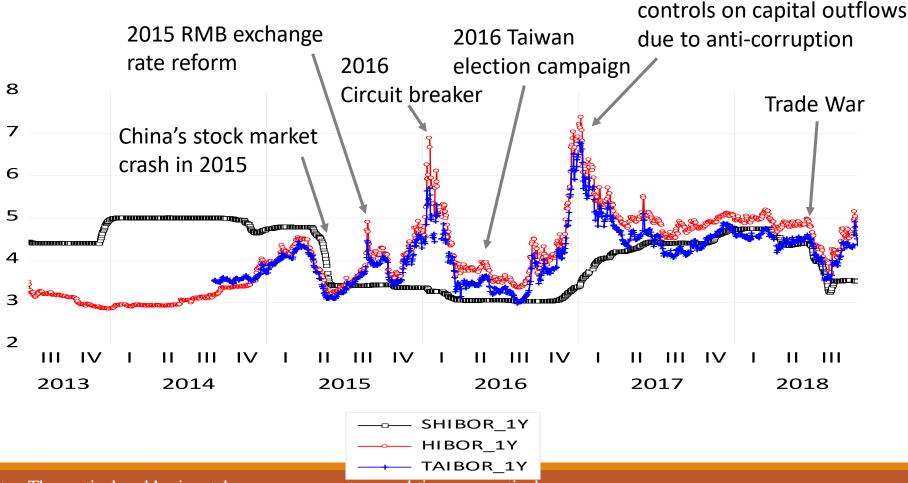
Kuo-chun YEH National Taiwan University Tai-kuang HO National Taiwan University Ya-chi LIN Feng Chia University

- On 31st of August 2012, Taiwan and mainland China signed an MOU on Cross-Strait Currency Settlement Cooperation (海峽兩岸貨幣清算合作備忘錄), which established the basic principles and cooperative framework of a currency clearing mechanism for the two sides of the Taiwan Strait.
- Since 1st of September 2014, Taiwan has established an offshore RMB market with exchange rates and interbank loan rates on the basis of the MOU.
- From now on the RMB markets in the so-called Great Chinese Economic Area have been completed.

• Due to the close trade link with China, Taiwan accumulated 300 billion RMB deposit pool.


Selected RMB offshore Markets (bil. RMB)

	Hong Kong	Taiwan	Singapore	London	Seoul
Transaction share	71%	2.6%	5.1%	5.3%	2.8%
RMB deposit	851.1	319.4	225.0	20.0	30.2
RMB bond	68.7	31.2	12.7	10.0	-
RQFII	270	100	100	80	80
Currency swap	400	-	300	350	360


Source: SWIFT, central banks' information till 2015.

- The established markets do not mean no arbitrage opportunities exist among the three markets. Although RMB internationalization should be an excellent opportunity for Taiwan's financial development, it also has been a national security concern since China's monetary policy can affect Taiwan's financial stability.
- Taiwan's political affairs, e.g., the 2016 Taiwan election, which lent support to independence, could reduce reliance on the Chinese economy. Postponing of the Cross-strait Service Trade Agreement has also impeded further financial development.

• It seems divergence of SHIBOR and the other two offshore RMB market. RMB arbitrage exists among offshore and onshore markets.

• It seems divergence of SHIBOR and the other two offshore RMB market. RMB arbitrage exists among offshore and onshore markets.

Note: The vertical and horizontal axes are percentage and time, respectively. Source: WIND

- According to the uncovered interest parity (UIP), RMB arbitrage remained means that the RMB markets return converge.
- Conventional approaches apply unit root test to investigate the convergence of returns.
 But it has a few disadvantages:
 - ✓ Rejecting the unit-root hypothesis <u>does not imply</u> that the RMB returns across countries <u>converge to the same level</u>, there still exists <u>arbitrage</u> <u>opportunities for investors</u>.
 - ✓ When the common factor is nonstationary, the return differentials may retain non-stationary characteristics.
- Our research apply sigma-convergence test (or log t test) (Phillips & Sul, 2007; Kong et al., 2019), which investigates the variance convergence of the cross-sectional returns over time.

The research questions of this paper are as follows:

- 1. Is RMB arbitrage remained among the RMB markets in Great Chinese Economic Area?
 - ✓ We use the log t test by Phillips & Sul (2007) to provide a more precise determination for convergence of the RMB markets.
- 2. How the political and economic shocks since 2014 impact on the RMB market return?
- 3. Does there exist club convergence among the RMB markets?

2. The Model

With risk-averse investors, the hold of uncovered interest parity (UIP)

$$i_{j,t} - i_t^* = E_t(s_{j,t+1} - s_{j,t}) + \omega_{j,t+1}$$

 $r_t^e = i_t - E_t \Delta s_{t+1}$ is the return for investors.

• The relationship among the three RMB markets is as follows:

$$r_{CNY,t}^{e} - \omega_{CNY,t+1} = r_{CNH,t}^{e} - \omega_{CNH,t+1} = r_{CNT,t}^{e} - \omega_{CNT,t+1}$$

If investors are risk neutral,

$$r_{CNY,t}^e = r_{CNH,t}^e = r_{CNT,t}^e$$

3. The log t Test

- This paper applies the sigma-convergence test of Phillips and Sul (2007) to examine the convergence of return.
- Assume that the return is composed into systematic risk and idiosyncratic risk.

$$r_{jt} = a_{jt} + \lambda_{jt} \mu_t,$$

• To separate the common component from idiosyncratic components, the return is re-written as:

$$r_{jt} = \left(\frac{a_{jt}}{\mu_t} + \lambda_{jt}\right) \mu_t = b_{jt} \mu_t,$$

To examine the joint hypothesis of return convergence,

$$H_0: b_{j,t} \rightarrow b$$
 for all j
 $H_A: b_{j,t} \rightarrow b$ for some j

3. The log t Test

• The common factor could be removed by dividing the cross-section mean of returns.

$$h_{it} = \frac{r_{it}}{N^{-1} \sum_{i=1}^{N} r_{it}} = \frac{b_{it}}{N^{-1} \sum_{i=1}^{N} b_{it}}$$

- The cross-sectional variance is derived by $H_t = N^{-1} \sum_{i=1}^{N} (h_{it} 1)^2$
- The convergence test provided by Phillips and Sul (2007) is also called the sigma-convergence test.

$$\log \frac{H_1}{H_t} - 2\log(\log t) = \beta_0 + \beta_1 \log t + u_t$$

$$t = T_0, ..., T$$

$$T_0 = [cT] \text{ for some } c > 0$$

If $\beta_1 < 0$, the long-run convergence of returns is rejected.

• Conventional unit root and co-integration Tests of r_{CNY} , r_{CNH} and r_{CNT}

	1-month	3-month	6-month	1-year
Augmented Dickey–Fuller test				
r_{CNY} (since Oct.16, 2006)	-2.27	-0.66	0.93	-0.85
r_{CNH} (since Jun.24, 2013)	2.29	1.37	1.39	0.60
r_{CNT} (since Sep.01, 2014)	1.02	1.43	1.09	0.92
Co-integration test ²				
Trace	0.10 ***	0.06	0.06	0.05
Maximum Eigenvalue	0.10 ***	0.06	0.06	0.05
Granger causality test				
$r_{CNK} \rightarrow r_{CNY}$	0.76	0.13	0.04	0.26
$r_{CNT} \rightarrow r_{CNY}$	0.50	0.05	0.01	0.25
$r_{CNY} \rightarrow r_{CNH}$	5.58 *	5.22 *	3.04	2.92
$r_{CNT} \rightarrow\!$	19.87 ***	6.87 **	5.35*	0.77
$r_{CNY} \rightarrow\!$	3.65	4.28	4.40	9.73
$r_{CNH} ightharpoonup r_{CNT}$	5.97 *	2.08	21.19***	37.43

Note:

^{1. *, **, ***} imply significance at the 10%, 5%, 1% level, respectively.

^{2.} The Johansen co-integration test statistics is based on the hypothesis of zero cointegration equation.

The log t Tests of r_{CNY} , r_{CNH} and r_{CNT}

	2014/09/01 ~2017/12/20	2014/09/01 ~2015/6/30	2014/09/01 ~2016/5/20
С	ξ_1 (t-stat.)	ξ_1 (t-stat.)	ξ_1 (t-stat.)
0.20	-0.94 (-3.62)	1.34 (55.41)	-1.65 (-6.68)
0.21	-0.89 (-4.27)	1.37 (63.93)	-1.78 (-6.74)
0.22	-0.82 (-7.22)	1.40 (73.70)	-1.95 (-6.83)
0.23	-0.68 (-8.07)	1.43 (84.78)	-2.09 (-6.93)
0.24	-0.48 (-0.99)	1.48 (103.67)	-2.27 (-7.08)
0.25	-0.25 (-0.30)	1.51 (117.34)	-2.43 (-7.23)
0.26	0.04 (0.04)	1.54 (131.15)	-2.63 (-7.47)
0.27	0.31 (0.44)	1.57 (144.12)	-2.79 (-7.72)
0.28	0.53 (0.93)	1.60 (155.07)	-3.01 (-8.10)
0.29	0.75 (1.76)	1.63 (162.80)	-3.19 (-8.49)
0.30	0.94 (2.86)	1.68 (163.81)	-3.42 (-9.12)

Club Convergence

	log t	t-stat.	Countries or Regions
2014/09/01~2016/5/20			
Club convergence			None
Independent trend			CNY, CNH, CNT

• We are also interested in the impact of <u>US</u> and <u>global factors</u> on RBM markets.

The log t Tests of r_{CNV} , r_{CNH} , r_{CNT} , r_{LIBOR} , and	LIBK	return
--	------	--------

	108 c Tenen OT (CN)	<u>Y2 " CNH2 " CN12 " LIBUR</u>	, and I bit i course
	2014/09/01	2014/09/01	2014/09/01
	~2017/12/20	~2015/6/30	~2016/5/20
C	ξ_1 (t-stat.)	ξ_1 (t-stat.)	ξ_1 (t-stat.)
0.20	0.15 (3.10)	-0.27 (-34.99)	-0.01 (-2.03)
0.21	0.16 (3.12)	-0.26 (-38.28)	-0.01 (-1.52)
0.22	0.16 (3.14)	-0.26 (-41.82)	0.00 (0.14)
0.23	0.17 (3.17)	-0.25 (-45.60)	0.01 (5.18)
0.24	0.17 (3.21)	-0.25 (-51.67)	0.01 (7.75)
0.25	0.18 (3.24)	-0.24 (-55.95)	0.02 (5.91)
0.26	0.18 (3.29)	-0.24 (-60.37)	0.02 (4.72)
0.27	0.19 (3.34)	-0.24 (-64.89)	0.03 (4.16)
0.28	0.19 (3.38)	-0.23 (-69.43)	0.03 (3.72)
0.29	0.20 (3.43)	-0.23 (-73.94)	0.04 (3.51)
0.30	0.20 (3.48)	-0.22 (-80.45)	0.04 (3.36)

Club Convergence

	$\log t$	t-stat.	Countries or Regions
2014/09/01~2015/6/30			
Club convergence	1.43	(84.78)	CNY, CNH, CNT
Independent trends			LIBOR, TBR

Summary and Policy Implications

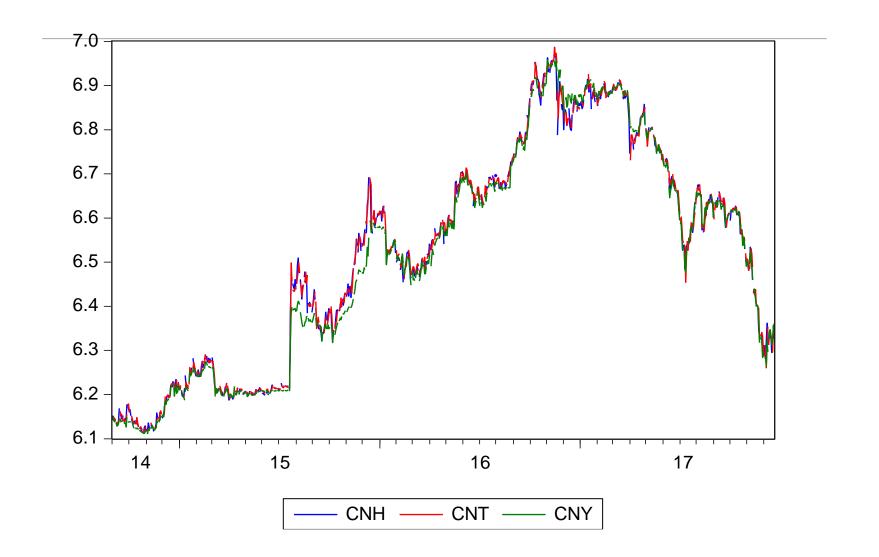
2014/09/01 2015/6/30 2016/5/20 2017/12/20

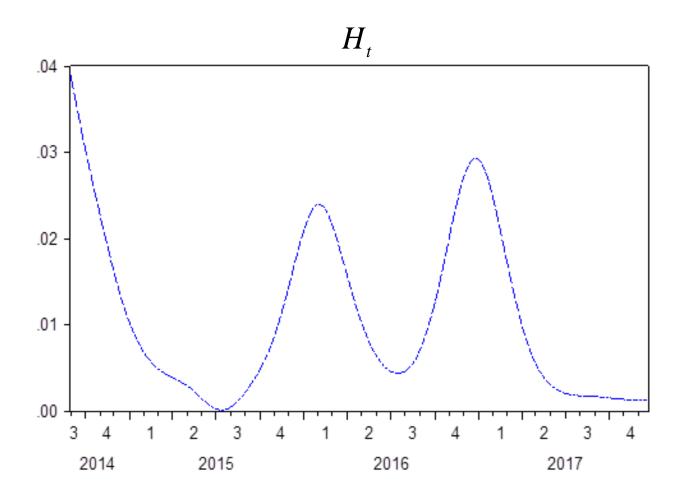
CNY, CNH, CNY
Converge

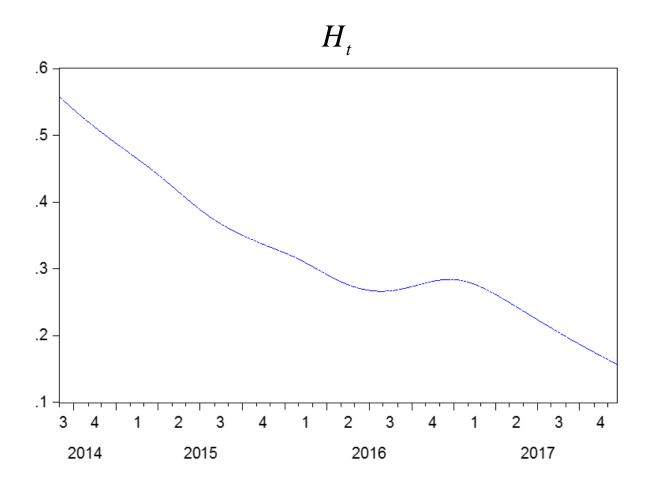
CNY, CNH, CNY
Converge

CNY, CNH, CNY
Converge

Summary and Policy Implications


2014/09/01 2016/5/20 2015/6/30 2017/12/20 CNY, CNH, CNY CNY, CNH, CNY **Diverge** Converge Converge **TBR** Converge **LIBOR**


IMF Working Papers (Arslanalp, 2016): China's influence on regional markets is not yet to the level of the United States.


5. Conclusion

- Since there is unit root in r_{CNY} , r_{CNH} and r_{CNT} , the sigma convergence test is more suitable than conventional unit root test.
- Before China's stock market crash in 2015, RMB return converge in the three RMB markets. After then, mainland China's impacts on the Great Chinese Economic Area weakened.
- After the global financial risk, US recover it's impact on the RMB markets.

Thank You for Your Attention.

