

Do acute health care needs of the poor crowd out their chronic care utilization? Evidence from Rural India

Anoshua Chaudhuri, Ph.D.
Professor of Economics
San Francisco State University

Co-authors:

Subrata Mukherjee, Ph.D., Institute Development Studies, Kolkata Dr. Anamitra Barik, Society for Health and Demographic Surveillance, Birbhum

2020 JOINT INTERNATIONAL VIRTUAL CONFERENCE OF ACFEA AND ACES, SEPTEMBER 12, 2020

Outline

- Context
- Questions
- Methods
- Data
- Results
- Future direction

Context

-
- India has seen a rapid rise in the prevalence of noncommunicable diseases
 - Brought on by industrialization, urbanization, globalization, higher incomes, lifestyle changes.
- Epidemiological transition (i.e., from infectious to chronic diseases) not complete
- In third phase of demographic transition (i.e., greater life expectancy achieved)

The Rural Context

- Large rural-urban divide
- Rural economy: poor, agrarian, resource & infrastructure starved
- Rural health:
 - o high rates of acute infections, respiratory or gastrointestinal, yet cardio-vascular diseases kill at a higher rate,
 - Increased longevity from higher life expectancy
 - Barely 5% spent by households on health
 - Supply side constraints to treat health
- Rise in chronic diseases bound to create greater pressures, both on the household as well as the whole system.

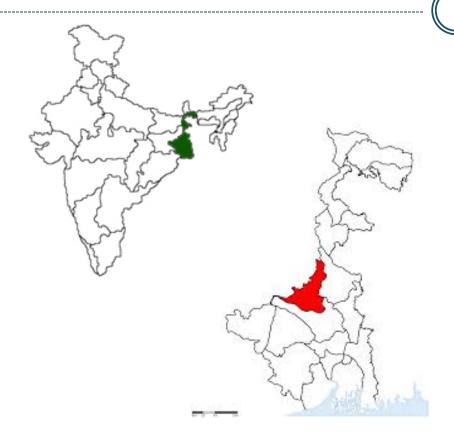
Specific Questions

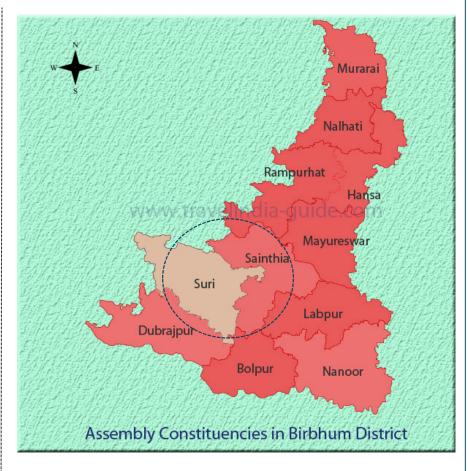
- What happens to chronic care management/utilization when there is an acute care episode within the household?
- Is there a crowd-out/rationing?
- Is there an inadvertent age and gender discrimination within the household in making these decisions?
- These questions have become even more poignant in the recent context of COVID-19 ravaging the whole country?

Contributions for Health and Household Economics

- Evidence on simultaneous decision-making within the household on health care seeking and utilization
- Confronts the growing impact of NCDs on poor households and particularly on certain members of the households,
- Evidence for inadvertent age and gender discrimination

Model


- Household utility maximization model where the two goods are acute health care and chronic health care
- Standard demand model to test whether there is substitution between the two
- Human capital model would predict that the household will invest in the member that yields the highest rate of return/ whose opportunity cost of being sick is the highest.
- Help us predict varying degrees of substitution for each demographic group.


Data and Sampling procedure

- Birbhum Population Survey 2012 by Society of Health and Demographic Surveillance of West Bengal.
- Predominantly rural and low-income, population growth rate over the decade prior to data collection was 16.15 %, literacy rate of 70.9 %
- Survey on general morbidity, health consumption and health expenditure
- Sampling: 4 blocks selected based on diversity in socio-economic profile. Within the selected blocks villages were selected by stratified random sampling and in selected villages all households were selected.

Where is Birbhum? Why Birbhum?

http://www.shds.in/

Anoshua Chaudhuri, Ph.D. ACFEA 2020

Anoshua Chaudhuri, Ph.D. ACFEA 2020

Sample description

- The sample size is **54585** individuals and **12557** households.
- Households in this rural sample lie mainly in lower middle to poor section of the income distribution.
- Subsist on rain-fed agriculture, mining and quarrying

Study population

Characteristics	2012
Total population	54585
Total number of households	12, 557
Average household size	4.3
% male population	50.8
Sex ratio	970
% Hindu	70.3
% Muslim	29.1
% Christian	0.5
% household head SC	34.09
% Household head ST	10.0
% Household head OBC	6.7
Literacy rates	68.9

Anoshua Chaudhuri, Ph.D.

Study population

Characteristics	2012
Household access to safe drinking water	99.6%
Household access to sanitation facility	25.3%
Household access to modern cooking fuel	9.3%
Household access to drainage facility	27.6%
Catastrophic health expenditure in episodes of hospitalization*	50.5%

^{*}Catastrophic health expenditure includes expenses through borrowing/mortgage, selling assets and charity

Methods

- Constructed acute and chronic disease classifications
- Constructed economic class groupings using local published poverty line measures
- Descriptive analyses to check for rationing behavior
- Reduced form regressions:
 - ➤ Individual level analysis to estimate demand for care conditional on reported episodes, probit, marginal effects
 - $$\begin{split} & \star \ h_{ijt} = \alpha + \beta Sick_{ijt} + Poverty_{ij}'\gamma_{poverty} + Social \ Class_{ij}'\gamma_{class} \\ & + Age_{ij}'\gamma_{age} + Female_{ij}\gamma_{female} + Age_{ij}' Sick_{ijt}\gamma_{Int} + \\ & Female_{ij} Sick_{ijt}\gamma_{Int} + \varepsilon_{it} \end{split}$$
 - ➤ Household analysis to estimate demand for care conditional on simultaneously reported acute and chronic episodes, OLS and Village fixed effects
 - * $h_{ijt} = \alpha + \beta Sick_{jt} + Poverty'_{j}\gamma_{poverty} + Social\ Class'_{ij}\gamma_{class} + Age'_{ij}\gamma_{age} + Female_{ij}\gamma_{female} + Age'_{ij}_Sick_{ijt}\gamma_{Int} + Female_{ij}_Sick_{ijt}\gamma_{Int} + v_{i} + \varepsilon_{it}$

Disease Classifications

Acute vs Chronic

 Chronic: longer lasting, slow to manifest in full-blown symptoms, need lifestyle changes as well as long term and often expensive medical care.

Examples are diabetes, arthritis, hypertension, heart disease, asthma, cancer,

 Acute: periodic episodes, short term in nature, requires immediate attention, can lead to absences from work and loss of income, can be treated and cured relatively quickly

E.g., malaria, dysentery, diarrhea, eye and ear infections, abdominal pain

Description of disease prevalence

- Descriptive results indicate that prevalence of chronic illness is much less compared to acute illnesses, reporting bias?
- Rich report higher prevalence of illness compared to the poor.
- While at almost all age groups, prevalence of acute illness is greater, this gets reversed in the 60+ age group where chronic disease prevalence is greater than acute symptoms.
- Women report higher prevalence of illness (both acute and chronic) compared to men.
- Chronic illnesses get treated less than acute illnesses all across income categories but in proportion much less in poor households.

Results on the crowd-out behavior

Question		Estimation	Summary Result
1. Likelihood of treatment	For acute illness	Probit	0.0472***
2. Likelihood of treatment	For chronic illness	Probit	-0.0425***
3. Likelihood of treatment for	When there are simultaneous	Probit	-0.0118***
chronic illness	acute illness (number) within		
	household		
4. Expenditure on chronic	When there are simultaneous	OLS	0.6291***
treatment	acute illness (number) within		
	household	FE	0.6543***
5. Expenditure on chronic	When there are simultaneous	OLS	-0.0735***
treatment	acute expenditures in household	FE	-0.0820***
6. Likelihood of private	When there are simultaneous	Probit	-0.0122
provider for chronic treatment	acute illness in household		
7. Likelihood of private	When there are simultaneous	Probit	0.0092**
provider for chronic treatment	acute expenditures in household		

All models are controlled for age, sex, income class, socio-religious codes; *** p<0.001, ** p<0.01

	(1)	(2)	
	treatchron	lhhchrcost	
Non-elderly male has acute	-0.0117***	0.6303***	
Illness in the household	(0.0030)	(0.0341)	
Youth	0.0782***	0.2112**	
	(0.0162)	(0.0762)	
Midage	0.2243***	0.8188***	
	(0.0192)	(0.0884)	
Seniors	0.4393***	1.5305***	
	(0.0252)	(0.1275)	
Female	-0.0795***	-0.1590*	
	(0.0208)	(0.0742)	
Youth*Female	0.1464***	0.3383***	
	(0.0286)	(0.0985)	
Midage*Female	0.1556***	0.3875***	
	(0.0310)	(0.1154)	
Senior*Female	0.0553	-0.1456	
	(0.0307)	(0.1713)	
Income	Yes	Yes	
Social Class	Yes	Yes	
Religion	yes	Yes	
Observations	13,204	13,204	
R-squared		0.1240	
Robust standard errors in parentheses; *** p<0.001, ** p<0.01, ** p<0.05			

Results

- Likelihood to treat a chronic illness is lower when there is acute illness
- Female & Seniors crowdedout
- Spending on acute illness may induce chronic illness discovery hence expenses
- Causal inference not established as most of these happen simultaneously
 - If hh already know about chronic condition, likely wont treat
 - If they spend on acute, they will spend on chronic due to discovery

Conclusion

- Strong evidence that there is crowding out of chronic treatment
- Strong evidence of expenditure on chronic and acute care being complementary
- Expenditures are endogenous, but village fixed effects results confirm a lower bound
- There are age and gender variations

Discussion

Complementarities of care

Implications for the supply side

Why are these choices made?

- Is it a lack of awareness and reporting?
- Is it a lack of ability to pay?
- Is it lack of infrastructure?
- Is it systemic?

Reporting and treatment of chronic diseases

Episode	Reported last year	Treated	Medication
Arthritis	20.97%	11.35%	5.00%
Chest pain	3.37%	2.40%	1.45%
Asthma	4.70%	3.42%	2.13%
Diabetes	2.48%	2.18%	1.52%
Cancer	0.06%	0.06%	0.05%

Anoshua Chaudhuri, Ph.D.

Reason for not seeking chronic care

Reasons for not seeking care	Frequency	Percent
Absence of health facility	3	0.99
Health facility present but no		
doctor and medicine	4	1.32
Wait for long time	1	0.33
Don't have money	139	46.03
Illness not critical	75	24.83
Others	22	7.28
No doctor for illness	2	0.66
Treatment may cost more	25	8.28
Government health facility far	2	0.66
Don't want to visit govt hospital	9	2.98
Missing	20	6.62
Total	302	100

Anoshua Chaudhuri, Ph.D.

Thank you!
Comments and Questions?
anoshua@sfsu.edu