A VIEW FROM THE TOP: ARE TOP FLOOR UNITS GOOD FOR CONSUMPTION BUT BAD FOR INVESTMENT?

ACES 2020

Edward Tang, HKSYU, Hong Kong Charles Leung, CityU, Hong Kong

INTRODUCTION

High-rise buildings is the city icon of Hong Kong.
Land area = 1,106km², Skyscrapers = 1,453

Source: http://skyscraperpage.com

Source: http://skyscraperpage.com

INTRODUCTION

• Benefits of staying at the top of buildings:

- Better city views and air quality
- Higher degree of privacy
- A quiet environment
- While these buildings are eye-catching, formal analysis is rare.
- It takes an initial step and investigates the valuation of these properties.

INTRODUCTION

• Our focus: Top floor units (TFU) at the top of residential buildings

• Properties of TFU:

- Accompanied by an accessible roof → offering better living standards and prestige
- Differentiated product → driving the "peer group effect" or "relativity" in consumer behaviour (Van de Stadt et al., 1985; Cole et al., 1992; Carroll et al., 1997; Maurer and Meier, 2008)

• Our conjecture: TFU is traded at a premium

• Percentage of completed estates having TFU

• Ratio of completed TFU to the total completed housing units

FLOW OF THE PAPER

• Computation of top floor premium

• Inclusion of TFU in efficient frontier analysis

• Volatility of TFU market

• Performance of investing TFU versus standard housing units

COMPUTATION OF TOP FLOOR PREMIUM

- 32 large-scale residential estates
- $\approx 170,000$ standard housing units, $\approx 3,000$ TFU
- Data: EPRC (1993Q1 2017Q2)
- Top Floor Premium

Actual transacted price of TFU – Predicted price of normal housing unit

Actual transacted price of TFU

COMPUTATION OF TOP FLOOR PREMIUM

• Predicted price can be obtained from **hedonic pricing model**:

$$\begin{split} &\ln(price) \\ &= \beta_0 + \beta_1 \ floor + \beta_2 grossarea + \beta_3 \ swp + \beta_4 \ scale \\ &+ \beta_5 \ hk + \beta_6 kln \ + \beta_7 \ cbd \\ &+ \beta_8 \ mtr + \beta_9 \ market + \beta_{10} \ hospital + \beta_{11} \ library \\ &+ \beta_{12} \ shk + \beta_{13} \ hen + \beta_{14} \ ck + \beta_{15} nwd + \beta_{16} \ sino + \varepsilon \end{split}$$

• Adjusted R-square $\approx 90\%$

COMPUTATION OF TOP FLOOR PREMIUM

Top floor premium: Fluctuates between 5% and 15%
"Value of social status" inside TFU

TOP FLOOR PREMIUM AND MACROECONOMY

• Unit root test

Variable	Description	Level	First difference
TFP	Top floor premium	-3.9129 ***	-7.7072 ***
RHP	Real housing price (constant quality)	-0.1381	-5.6296 ***
RGDP	Real gross domestic product	-0.1246	-4.4974 ***
RHS	Real Hang Seng Index	-2.4375	-9.5141 ***
RTRADE	Real trade volume	-0.8763	-3.4530 **
TERM	10 year – 3 month Treasury yield	-3.4059 **	-7.7923 ***
	spread		
TED	3 month LIBOR – 3 month Treasury	-2.6091	-10.1882 ***
	yield spread		

Note: The optimum lag is determined by AIC criteria at a maximum lag of 4 quarters. *** and ** denotes 1% and 5% statistical significance respectively.

TOP FLOOR PREMIUM AND MACROECONOMY

• Granger causality

		TFP	ΔRHP	ΔRHS	ΔRGDP	ΔRTRADE	ΔΤΕD	TERM
TFP								
ΔRHP	C	**		***		***		
ΔRHS	Granger		***					
ΔRGDP	causes		***			***		
ΔRTRADE			***	***			**	
ΔΤΕD		**				***		
TERM								

• The lag is chosen to be one. *** and ** denote 1% and 5% statistical significance respectively.

EFFICIENT FRONTIER

• Common investment vehicles in Hong Kong

Risk premium of:	Mean	Std.Dev.	Min	Max
Top-floor housing market	0.0254	0.1071	-0.1928	0.2498
Mass housing market	0.0412	0.1798	-0.4323	0.4155
Hang Seng Index	0.0682	0.2699	-0.5203	1.1204
S&P 500	0.0588	0.1647	-0.4308	0.5175
Gold	0.0369	0 1573	-0 2747	0 3948
British Pound	-0.0366	0.0862	-0.2986	0 1402
Jananese Ven	-0.0159	0.11/1	_0.2708	0.2182
Japanese Ten	-0.0139	0.1141	-0.2790	0.2102

EFFICIENT FRONTIER

Note: 🔺 = Minimum variance portfolio; 🔳 = Optimal tangency portfolio

EFFICIENT FRONTIER

	Minimum variance	Optimal tangency
	portfolio	portfolio
Top-floor housing		
market	25.76%	23.54%
Mass housing		
market	0%	0%
Hang Seng Index	0%	0%
S&P 500	3.98%	41.47%
Gold	0%	34.99%
British Pound	26.65%	0%
Japanese Yen	43.61%	0%

VOLATILITY

• EGARCH

$$r_{i,t} = \beta_0 + \beta_1 r_{i,t-1} + \varepsilon_{i,t}, \quad \text{where } \varepsilon_{i,t} \sim N(0, \sigma_{i,t}^2)$$
$$\ln(\sigma_{i,t}^2) = \alpha_0 + \alpha_1 \ln(\sigma_{i,t-1}^2) + \alpha_2 \frac{u_{i,t-1}}{\sqrt{\sigma_{i,t-1}^2}} + \alpha_3 \frac{|u_{i,t-1}|}{\sqrt{\sigma_{i,t-1}^2}} + \alpha_4 D_{1,t} + \alpha_5 D_{2,t}$$

for *i* = luxury market, mass market

where $D_1 = 1$ for 2010Q4 – 2012Q4 (only special stamp duty is imposed) and $D_2 = 1$ for 2013Q1 – 2017Q2 (special stamp duty and double stamp duty are imposed).

• <u>Results of EGARCH model</u>

Mean equation:

$$r_{i,t} = \beta_0 + \beta_1 r_{i,t-1} + \varepsilon_{i,t}$$

	Luxury market	Mass market
βο	0.0159 ***	0.0031
β_1	0.6440 ***	0.3667 ***

Variance equation:

$$ln(\sigma_{i,t}^{2}) = \alpha_{0} + \alpha_{1}ln(\sigma_{i,t-1}^{2}) + \alpha_{2}\frac{u_{i,t-1}}{\sqrt{\sigma_{i,t-1}^{2}}} + \alpha_{3}\frac{|u_{i,t-1}|}{\sqrt{\sigma_{i,t-1}^{2}}} + \alpha_{4}D_{1,t} + \alpha_{5}D_{2,t}$$

	Luxury market	Mass market
α_0	-1.0133 *	-0.7938
α_1	0.8947 ***	0.9107 ***
α2	0.2305 *	0.3400 ***
α_3	0.5338 ***	0.4240 **
α_4	-0.1027	-0.0078
α5	-0.0715	0.0217

Note: ***, ** and * denote 1%, 5% and 10% significance level respectively.

• Suppose one TFU was bought in period t_1 at the real price p_1 , and was then resold in period t_2 at the real price p_2 .

• Rate of return of trading TFU:
$$r_A = \frac{p_2 - p_1}{p_1}$$

• The paper does a matching by collecting all non-TFU records that are traded at both t_1 and t_2 . The real rate of return of each non-TFU transaction is computed. μ_A is then obtained by taking a simple average.

• Comparison between r_A and μ_A :

- Liquidity preference theory (Keynes, 1936): Since the market of TFU is relatively illiquid than that of non-TFU, sellers need to sell the TFU at a lower price to attract buyers, thus producing a lower real rate of return (i.e. $r_A < \mu_A$).
- Theory of uniqueness (Snyder & Fromkin, 1980): excessive similarity to others will be negatively interpreted, and will result in greater seeking of differences to maintain one's separate identity. Therefore, the unique features of TFU allows sellers to achieve a higher real rate of return (i.e. $r_A > \mu_A$).

• 1993Q1 − 1997Q4

• 1998Q1 – 2008Q2

• 2008Q3 – 2017Q2

CONCLUSION

- Computation of top floor premium
 - (Top floor premium is positive)
- Inclusion of TFU in efficient frontier analysis
 - (TFU is an important asset in optimal tangency portfolio)
- Volatility of TFU market
 - (EGARCH \rightarrow Anti-leverage effect)
- Performance of investing TFU versus standard housing units
 - (Liquidity preference theory vs. theory of uniqueness)

THANKS

APPENDIX

• Adjusted R-square of hedonic regression

• Turnover rate of TFU and non-TFU

• <u>Summary statistics of variables in hedonic pricing model</u>

Variable	Definition	Mean	Std.Dev.	Min	Max
ln(price)	Natural logarithm of transacted housing price	14.72	0.55	12.30	17.53
floor	Floor level of housing unit	15.25	9.19	1	45
grossarea	Gross area of housing unit (square feet)	662.23	174.92	311	1773
	Equals 1 if the estate has a swimming pool, 0				
swp	otherwise.	0.77	0.42	0	1
scale	Number of housing units in the estate	8122.81	4616.25	1120	15880
	Equals 1 if the estate locates at Hong Kong				
hk	Island, 0 otherwise.	0.25	0.43	0	1
	Equals 1 if the estate locates at Kowloon, 0				
kln	otherwise.	0.27	0.44	0	1
	Distance to central business district				
cbd	(kilometers)	18.24	11.03	5.8	39.3
	Distance to the nearest subway station				
mtr	(kilometers)	1.00	0.86	0.08	4.9
market	Distance to mass transit station (kilometers)	1.32	0.73	0.17	2.8
	Distance to public district general hospital				
hospital	(kilometers)	3.56	2.30	0.5	10.2
library	Distance to the public library (kilometers)	1.12	0.48	0.17	2.2
	Equals 1 if the estate is developed by Sun				
shk	Hung Kai, 0 otherwise.	0.18	0.38	0	1
	Equals 1 if the estate is developed by				
hen	Henderson Land, 0 otherwise.	0.11	0.31	0	1
	Equals 1 if the estate is developed by Cheung				
ck	Kong, 0 otherwise.	0.38	0.49	0	1
	Equals 1 if the estate is developed by New				
nwd	World Development, 0 otherwise.	0.23	0.42	0	1
	Equals 1 if the estate is developed by Sino, 0				
sino	otherwise.	0.04	0.21	0	1

• List of variables in time series analysis

Variable	Definition	Source
TFP	Block trade premium	Author's calculation
RHP	Real housing price (constant quality)	Author's calculation
RGDP	Real gross domestic product	Census and Statistics
		Department
RHS	Real Hang Seng Index	Hong Kong Exchanges
		and Clearing Limited
RTRADE	Real trade volume	Census and Statistics
		Department
TERM	10 year – 3 month Treasury yield spread	U.S. Federal Reserve
TED	3 month LIBOR – 3 month Treasury yield spread	U.S. Federal Reserve

Sampling period: 1993Q1 – 2017Q2

• Variance decomposition

		Explained by innovations in												
	TE	RM	Δ٦	TED	ΔRTF	RADE	ΔRO	GDP	ΔR	HS	ΔRHP		TFP	
Quarters	Ι	II	Ι	II	Ι	II	Ι	Π	Ι	П	Ι	Π	Ι	II
anead														
1	4.0	0.0	0.2	0.0	0.9	0.0	0.0	0.0	0.5	0.0	0.1	0.0	94.3	100.0
2	4.9	1.7	4.7	3.3	0.8	0.0	0.1	1.6	0.5	0.0	0.1	0.1	88.9	93.2
3	5.0	1.8	4.4	3.2	1.2	0.0	1.5	1.6	2.0	2.6	2.1	3.1	83.8	87.8
4	4.8	1.7	4.6	4.0	1.1	0.0	1.8	1.5	2.8	3.6	2.9	3.8	82.0	85.5
5	4.6	1.7	4.7	4.0	1.3	0.1	1.8	1.8	2.9	3.7	3.0	3.8	81.7	85.1
6	4.5	1.7	5.2	4.3	1.4	0.1	2.6	2.3	3.0	4.1	2.9	3.8	80.4	83.7
7	4.5	1.9	5.1	4.2	1.4	0.3	2.9	2.3	3.0	4.0	2.9	3.8	80.3	83.4
8	4.5	1.9	5.1	4.3	1.4	0.3	3.1	2.4	3.0	4.1	3.1	4.1	79.8	82.9

• Order I: TERM, Δ TED, Δ RTRADE, Δ RGDP, Δ RHS, Δ RHP, TFP

• Order II: TFP, Δ RHP, Δ RHS, Δ RGDP, Δ RTRADE, Δ TED, TERM

• Regression result

Dependent variable: $\frac{RHP_t}{RHP_{t-1}} - 1$	
RHD	0 2101 **
$\frac{RHP_{t-1}}{RHP_{t-2}} - 1$	0.2171
TO_TOP _t	5.8858 ***
TO_NON_TOP _t	-2.8097
$\frac{RGDP_t}{RGDP_{t-1}} - 1$	0.1062
$\frac{RTRADE_t}{RTRADE_{t-1}} - 1$	0.1185
TERM _t	0.0115
ΔTED_t	-0.0666 ***
Constant	-0.0471 ***
Adjusted R-square	0.40

• Annualized return of TFU market

• Summary statistics of variables in efficient frontier analysis

Risk premium of:	Mean	Std. Dev.	Min	Max
Top-floor housing market	0.0254	0.1071	-0.1928	0.2498
Mass housing market	0.0412	0.1798	-0.4323	0.4155
Hang Seng Index	0.0682	0.2699	-0.5203	1.1204
S&P 500	0.0588	0.1647	-0.4308	0.5175
Gold	0.0369	0.1573	-0.2747	0.3948
British Pound	-0.0366	0.0862	-0.2986	0.1402
Japanese Yen	-0.0159	0.1141	-0.2798	0.2182

 $\mathbf{34}$

Period	Top-floor	Matched	Quadrant				Ratio	$r_A < \mu_A$	$r_A > \mu_A$	Ratio
	transactions	non-top floor transactions	Ι	II	III	IV				
1993Q1 – 1997Q4	219	6,314	144	22	42	11	1:0.15:0.29:0.08	139	80	1.74:1
1998Q1 – 2008Q2	469	4,147	153	25	260	31	1:0.16:1.70:0.20	228	241	0.95 : 1
2008Q3 - 2017Q2	423	3,674	370	24	38	11	1:0.06:0.10:0.04	242	181	1.34 : 1